Feb? Ex:
$$f(x) = \begin{cases} x^2 & when x > 0 \\ 2x & when x < 0 \end{cases}$$

Find: $f'(0)$ (possibly an defined)
need to compute
 $f'(x) := \lim_{x > 0} \frac{f(x+\alpha x) - f(x)}{\alpha x}$
 $f'(0) := \lim_{x > 0} \frac{f(\alpha x) - f(x)}{\alpha x}$
 $f'(0) := \lim_{x > 0} \frac{f(\alpha x) - f(x)}{\alpha x}$
 $= \lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{\alpha x}$
 $= \lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x > 0} \frac{f(x)}{x} = \lim_{x > 0} \frac{f(x)}{x}$
 $\lim_{x >$

$$F_{X} = \begin{cases} -bx^{2}+bx & x < 0 \\ 5x^{3}-x & x \ge 0 \end{cases}$$

$$F_{inl} = \begin{cases} f'(0): & 0x = x-0 \\ z = x-0 \\ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0^{-}} \left(\frac{-bx^{2}+bx}{x}\right) = \lim_{x \to 0^{-}} \left(-6x+6\right) = b$$

$$\lim_{x \to 0^{+}} \frac{f(x)}{x} = \lim_{x \to 0^{+}} \left(\frac{5x^{3}-x}{x}\right) = \lim_{x \to 0^{+}} \left(5x^{2}-1\right) = -1$$

Quotient rule:
$$\frac{(\sqrt{x})'3^x - \sqrt{x}(3^x)'}{(3^x)^2} = \frac{\frac{1}{2}x^{-\frac{1}{2}} \cdot 3^x - x^{\frac{1}{2}} \cdot 3^x \ln 3}{(3^x)^2} = \frac{\frac{1}{2}x^{-\frac{1}{2}} - x^{\frac{1}{2}} \ln 3}{3^x}$$

Product rule:
$$\left(\sqrt{x} \cdot \left(\frac{1}{3}\right)^x\right)' = \frac{1}{2}x^{-\frac{1}{2}} \left(\frac{1}{3}\right)^x + x^{\frac{1}{2}} \left(\frac{1}{3}\right)^x \ln \frac{1}{3} = \frac{\frac{1}{2}x^{-\frac{1}{2}} - x^{\frac{1}{2}} \ln 3}{3^x}$$

Exercise 4.2.3. Use two different methods to compute $\left(\frac{1-x^2}{\sqrt{x}}\right)'$.

Example 4.2.3. Suppose f(x) and g(x) are differentiable. Given f(1) = 1, f'(1) = 2, g(1) = 3, g'(1) = 4. Find the value of $\frac{d}{dx} (f(x)g(x))$

at x = 1.

Solution. By the product rule

$$\frac{d}{dx} \underbrace{(f(x)g(x))}_{\checkmark} = \frac{f'(x)g(x) + f(x)g'(x)}_{\checkmark}.$$

At x = 1, the above is

$$\frac{d}{dx} (fg) = f'(1)g(1) + f(1)g'(1) = 2 \times 3 + 1 \times 4 = 10.$$

Example 4.2.4. Suppose f(x), g(x), h(x) are differentiable. Compute

$$\frac{d}{dx}\left(f(x)g(x)h(x)\right).$$

Solution.

$$\frac{d}{dx}\left(f(x)g(x)h(x)\right) = (f(x)g(x))\frac{d}{dx}h(x) + h(x)\frac{d}{dx}(f(x)g(x))\right)$$

$$= f(x)g(x)h'(x) + h(x)(f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x))$$

$$= f(x)g(x)h'(x) + f(x)g'(x)h(x) + f'(x)g(x)h(x).$$

$$\begin{array}{rcl} \text{Or} & & \text{can} & \text{write} & f(r) g(x) h(x) = f(g,h) \\ & \rightarrow & \text{Leibniz rule:} & (fgh)' = f'(g,h) + f(g,h)' \\ & & \uparrow & \text{Leibniz afain} \\ & = f'(g,h) + f(g,h'+g',h) \end{array}$$

4.3 The Chain Rule (for composite functions / change of variable)

Theorem 6 (The Chain Rule).

If
$$y = f(u)$$
 is a differentiable function of u ,
 $u = g(x)$ is a differentiable function of x ,
 $y = f \circ g$
 $v \neq av ded$ as then $e = u$ variable
 $v \in u$ variable

then the composite function y = f(g(x)) is a differentiable function of x, and

U= G(K)

Example 4.3.2. Compute:

$$f = \frac{d}{dx}\sqrt{1+\sqrt{x}} = q.$$

Solution. Let
$$y = f(u) = \sqrt{u}$$
, $u = g(x) = 1 + \sqrt{x}$. Then $f(g(x)) = \sqrt{1 + \sqrt{x}}$.

$$\frac{dy}{du} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}} \quad \text{and} \quad \frac{du}{dx} = \frac{1}{2\sqrt{x}}.$$

$$\frac{dy}{du} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}} \quad \frac{du}{dx} = \frac$$

Remark. No need to write the fomulas f(u), g(x) when we are skillful, just remember to differentiate layer by layer: outer than inner. then

For example,

$$\frac{d}{dx}(x+e^x)^{2019} = \underbrace{2019(\overbrace{x+e^x}^{g(x)})^{2018}}_{\text{outer}}\underbrace{(1+e^x)}_{\text{inner}}$$

Example 4.3.3. Using $(e^x)' = e^x$ and chain rule, we can prove $(a^x)' = a^x \ln a$ (a > 0).

Proof. Note:

$$a^x = e^{\ln a^y}$$
 (Very useful technique!)

Then,

Note:

$$a^{x} = e^{\ln q^{y}} (\text{Very useful technique!}) \qquad a = e^{\ln a}.$$

$$a^{x} = (e^{\ln a})'$$

$$= (e^{\ln a})'$$

$$= (e^{\ln a})'$$

$$= e^{x \ln a} \cdot \ln a$$

$$= a^{x} \cdot \ln a.$$

$$d(a^{x}) = de^{a}. du$$

Example 4.3.4. Use product rule and chain rule to prove the quotient rule.

Proof. By product rule, we have

For
$$\left(\frac{1}{g}\right)'$$
, let $y = \frac{1}{u}$, $u = g(x)$, then by chain rule,
 $y = \frac{1}{u}$, $u = g(x)$, then by chain rule,
 $\frac{d}{dy}\left(\frac{1}{g}\right)' = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{g^2(x)}g'(x)$.
Therefore,
 $\left(\frac{f}{g}\right)' = f'\frac{1}{g} - f\frac{g'}{g^2} = \frac{f'g - fg'}{g^2}$.

Example 4.3.5. Compute

$$\frac{d}{dx}e^{\sqrt{x^2+x}}.$$

Solution.

$$\frac{dy}{dx} = e^{\sqrt{x^2 + x}} \cdot (\sqrt{x^2 + x})' \qquad \text{(chain rule, } y = e^u, u = \sqrt{x^2 + x})$$
$$= e^{\sqrt{x^2 + x}} \cdot \frac{1}{2} (x^2 + x)^{-\frac{1}{2}} \cdot (2x + 1) \qquad \text{(chain rule again, } u = \sqrt{w}, w = x^2 + x)$$

Exercise 4.3.1. Prove

$$\frac{d}{dx}(g(x))^n = n(g(x))^{n-1}g'(x).$$

2.

1.

$$\frac{d}{dx} e^{\sqrt{\frac{x-1}{x+1}}} = e^{\sqrt{\frac{x-1}{x+1}}} \cdot (x-1)^{-\frac{1}{2}} \cdot (x+1)^{-\frac{3}{2}}.$$

$$let u = \sqrt{\frac{x-1}{x+1}}$$

$$y = e^{u}$$

$$\frac{d}{dx} = \frac{dy}{du} \frac{du}{dx}$$

$$= e^{u} \cdot \frac{d}{dx} \sqrt{\frac{x-1}{x+1}}$$

$$v = \frac{x-1}{x+1}$$

$$= e^{u} \cdot \frac{d}{dx} \sqrt{\frac{x-1}{x+1}} = e^{u} \cdot \frac{dv^{\frac{1}{2}}}{dv} \frac{dv}{dx}$$

$$= e^{u} \cdot \frac{d}{dx} \sqrt{\frac{x-1}{x+1}} = e^{u} \cdot \frac{dv^{\frac{1}{2}}}{dv} \frac{dv}{dx}$$

$$\int \frac{dv}{dx} \frac{dv}{dx} \frac{dv}{dx}$$

Chapter 4: Differentiation I

4.3.1 Technique Using Logarithmic Differentiation

Example 4.3.6. Prove

$$\frac{d}{dx}\ln|x| = \frac{1}{x}, \quad x \neq 0.$$

Proof. Let

$$y = \ln |x| = \begin{cases} \ln x, & \text{if } x > 0\\ \ln(-x), & \text{if } x < 0 \end{cases}$$

$$\frac{d \ln x}{dx} = \frac{1}{x} \quad \text{when } x > a$$

dent apply quotient forget to rule re express in furms of to

For
$$x > 0$$
, $\frac{dy}{dx} = \frac{1}{x}$; (et $a = -x$)
For $x < 0$, $\frac{dy}{dx} = \frac{1}{-x} \cdot (-1) = \frac{1}{x}$. (by chain rule)
Example 4.3.7. If $y = \sqrt[3]{\frac{(x-2)(x-3)^2}{x-5}}$, then find $\frac{dy}{dx}$.
Example 4.3.7. If $y = \sqrt[3]{\frac{(x-2)(x-3)^2}{x-5}}$, then find $\frac{dy}{dx}$.
 $y^3 = \frac{(x-2)(x-3)^2}{x-5}$, then find $\frac{dy}{dx}$.
 $y^3 = \frac{(x-2)(x-3)^2}{x-5}$, $y^3 = \frac{(x-3)(x-3)^2}{x-5}$, $y^3 =$

Example 4.3.8. Compute the derivative of x^x , x > 0. Solution. Write $x^x = e^{x \ln x}$. Let $y = e^u$ and $u = x \ln x$. Then $d = d x^x = \frac{dy}{du} \frac{du}{dx}$ $d = e^u (\ln x \frac{dx}{dx} + x \frac{d \ln x}{dx})$ $= e^u (\ln x \frac{dx}{dx} + x \frac{d \ln x}{dx})$ $= e^u (\ln x + x \frac{1}{x})$ $= e^u (\ln x + x \frac{1}{x})$ $= e^u (\ln x + x \frac{1}{x})$ $= e^u (\ln x + 1)$. u $= e^u (\ln x + 1)$. u $= e^u (\ln$

Exercise 4.3.2. Let $y = f(x)^{g(x)}$. Prove $y' = f(x)^{g(x)} \left(g'(x) \ln f(x) + \frac{f'(x)}{f(x)} g(x) \right)$.

MATH1520 University Mathematics for Applications

Chapter 5: Differentiation II

Learning Objectives:

(1) Use implicit differentiation to find slope.

(2) Discuss inverse function and its derivatives.

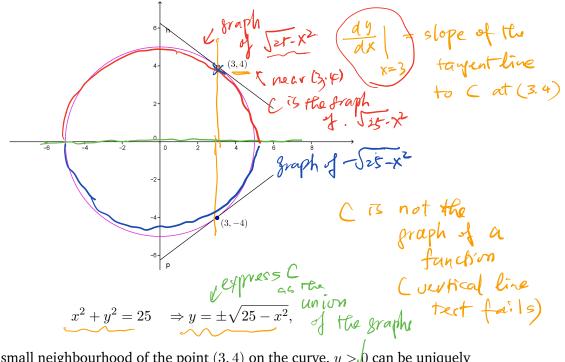
(3) Study the higher order derivative.

5.1 Differentiating Implicit Functions and Inverse Functions

5.1.1 Implicit functions

Example 5.1.1. Consider the circle on the x - y plane defined by $x^2 + y^2 = 25$. Find the equation of the tangent line to the circle at (3,4). $\int_{c} C_{c} \psi l_{c} = 2^{2} + q^{2} = 25$.

Solution. Method 1. Express y in terms of x explicitly.



 $\int \{(x, y) \mid x^2 + y^2 = 25\}$

Restrict to a small neighbourhood of the point (3, 4) on the curve, y > b can be uniquely given by $y = \sqrt{25 - x^2}$.

Spring 2021

$$y = \sqrt{-5 - x^2} = \sqrt{4}$$

$$y = \sqrt{-5 - x^2} = \sqrt{4}$$

$$y' = -\frac{x}{\sqrt{25 - x^2}} = \frac{dy}{dx} = -\frac{dy}{dy} \frac{dy}{dx}$$

when x = 3, $y' = -\frac{3}{4}$. The equation of the tangent line to the curve at (3, 4) is

$$y - 4 = -\frac{3}{4}(x - 3),$$

$$y = -\frac{3}{4}x + \frac{25}{4}.$$

 $4 \qquad a ctually g million be expressed$ Method 2. Implicit differentiation.
Regard y as a function y(x) without explicit formula. Differentiate both sides of $x^2 + y^2 = \int x^2$ 25 with respect to x, and then solve algebraically for $\frac{dy}{dx}$.

nnd the tangent line in the same way as with Method 1.

Remark. Method 2 is referred to as implicit differentiation, which is very useful to compute derivatives of functions not defined by explicit formulae.

Example 5.1.2. Let y = f(x) be a differentiable function of x that satisfies the equation $x^2y + y^2 = x^3$. Find the derivative $\frac{dy}{dx}$. The first on hold codes Solution. You are going to differentiate both sides of the given equation with respect to x.

So that you will not forget that y is actually a function of x, temporarily use the alternative notation f(x) for y, and begin by rewriting the equation as

$$x^{2}f(x) + (f(x))^{2} = x^{3}.$$

$$\frac{d}{dx}\left(x^{2}y+y^{2}\right) = \frac{d}{dx}x^{3}$$

$$2x \cdot y + x^{2}\frac{dy}{dx} + 2y\frac{dy}{dx} = 3x^{2} \qquad (x^{2}+2y)\frac{dy}{dx} = 3x^{2} - 2x \cdot 4$$

Now differentiate both sides of this equation term by term with respect to *x*:

$$\frac{d}{dx}[x^2f(x) + (f(x))^2] = \frac{d}{dx}[x^3]$$

$$\sim \left[x^2\frac{df}{dx} + f(x)\frac{d}{dx}(x^2)\right] + 2f(x)\frac{df}{dx} = 3x^2.$$
(5.1)

Thus, we have

$$x^{2} \frac{df}{dx} + f(x)(2x) + 2f(x) \frac{df}{dx} = 3x^{2}$$

$$\sim [x^{2} + 2f(x)] \frac{df}{dx} = 3x^{2} - 2xf(x)$$

$$\sim \frac{dy}{dx} = \frac{3x^{2} - 2xf(x)}{x^{2} + 2f(x)}.$$
(5.2)

Finally, replace f(x) by y to get

$$\frac{dy}{dx} = \frac{3x^2 - 2xy}{x^2 + 2y}.$$

Summary: Carrying out Implicit Differentiation

Suppose an equation defines y implicitly as a differentiable function of x. To find $\frac{dy}{dx}$:

- 1. Differentiate both sides of the equation with respect to x. Remember that y is really a function of x, and use the chain rule when differentiating terms containing y.
- 2. Solve the differentiated equation algebraically for $\frac{dy}{dx}$ in terms of x and y.

Example 5.1.3. Consider the curve defined by

1. Compute
$$\frac{dy}{dx}$$
. As a function of both rand J

2. Find the slope of the tangent line to the curve at (4, 2).

Solution. Starting with

$$x^3 + y^3 = 9xy,$$

we apply the differential operator $\frac{d}{dx}$ to both sides of the equation to obtain $\frac{d}{dx} (x^3 + y^3) = \frac{d}{dx} 9xy.$

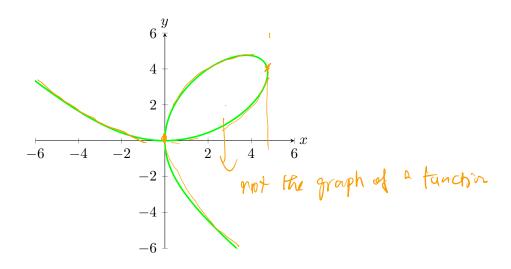


Figure 5.1: A plot of $x^3 + y^3 = 9xy$. While this is not a function of y in terms of x, the equation still defines a relation between x and y.

Applying the sum rule, we see that

$$\frac{d}{dx}x^3 + \frac{d}{dx}y^3 = \frac{d}{dx}9xy.$$

Let's examine each of the terms above in turn. To begin,

$$\frac{d}{dx}x^3 = 3x^2$$

On the other hand, $\frac{d}{dx}y^3$ is treated somewhat differently. Here, viewing y = y(x) as an implicit function of x, we have by the chain rule that

$$\frac{d}{dx}y^3 = \frac{d}{dx}(y(x))^3$$
$$= 3(y(x))^2 \cdot y'(x)$$
$$= 3y^2 \frac{dy}{dx}.$$

Consider the final term $\frac{d}{dx}(9xy)$. Regarding y = y(x) again as an implicit function, we have:

$$\frac{d}{dx}(9xy) = 9\frac{d}{dx}(x \cdot y(x))$$
$$= 9(x \cdot y'(x) + y(x))$$
$$= 9x\frac{dy}{dx} + 9y.$$

Putting all the above together, we get:

$$3x^2 + 3y^2\frac{dy}{dx} = 9x\frac{dy}{dx} + 9y.$$

Now we solve the preceding equation for $\frac{dy}{dx}$. Write

$$3x^{2} + 3y^{2}\frac{dy}{dx} = 9x\frac{dy}{dx} + 9y$$

$$\iff \quad 3y^{2}\frac{dy}{dx} - 9x\frac{dy}{dx} = 9y - 3x^{2}$$

$$\iff \quad \frac{dy}{dx}\left(3y^{2} - 9x\right) = 9y - 3x^{2}$$

$$\iff \quad \frac{dy}{dx} = \frac{9y - 3x^{2}}{3y^{2} - 9x} = \frac{3y - x^{2}}{y^{2} - 3x}.$$

For the second part of the problem, we simply plug in x = 4 and y = 2 to the last formula above to conclude that the slope of the tangent line to the curve at (4, 2) is $\frac{5}{4}$. See Figure 5.2.

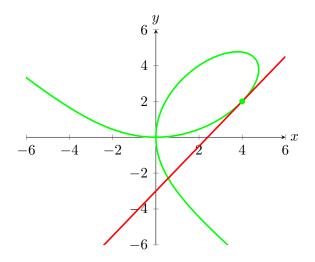


Figure 5.2: A plot of $x^3 + y^3 = 9xy$ along with the tangent line at (4, 2).

Example 5.1.4. Let *L* be the curve in the x - y plane defined by $x^2 + y^2 + e^{xy} = 2$. Use *L* to implicitly define a function y = y(x). Find y'(x) at x = 1 and the tangent line to the curve *L* at (1,0).

Solution. (Note: In this case, there is no good explicit formula for the function y(x).) Differentiate the equation $x^2 + y^2 + e^{xy} = 2$ on both sides with respect to x. We get:

$$2x + 2yy' + e^{xy}(y + xy') = 0,$$
$$\rightsquigarrow y' = -\frac{2x + e^{xy}y}{2y + e^{xy}x}$$