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Quotient rule:
(
p
x)03x �

p
x(3x)0

(3x)2
=

1
2x

� 1
2 · 3x � x

1
2 · 3x ln 3

(3x)2
=

1
2x

� 1
2 � x

1
2 ln 3

3x

Product rule:
✓p

x ·
✓
1

3

◆x◆0
=

1

2
x�

1
2

✓
1

3

◆x

+ x
1
2

✓
1

3

◆x

ln
1

3
=

1
2x

� 1
2 � x

1
2 ln 3

3x

Exercise 4.2.3. Use two different methods to compute
✓
1� x2p

x

◆0
.

Example 4.2.3. Suppose f(x) and g(x) are differentiable. Given f(1) = 1, f 0(1) = 2,
g(1) = 3, g0(1) = 4. Find the value of

d

dx
(f(x)g(x))

at x = 1.

Solution. By the product rule

d

dx
(f(x)g(x)) = f 0(x)g(x) + f(x)g0(x).

At x = 1, the above is

f 0(1)g(1) + f(1)g0(1) = 2⇥ 3 + 1⇥ 4 = 10.

⌅

Example 4.2.4. Suppose f(x), g(x), h(x) are differentiable. Compute

d

dx
(f(x)g(x)h(x)) .

Solution.

d

dx
(f(x)g(x)h(x)) = (f(x)g(x))

d

dx
h(x) + h(x)

d

dx
(f(x)g(x))

= f(x)g(x)h0(x) + h(x)(f(x)
d

dx
g(x) + g(x)

d

dx
f(x))

= f(x)g(x)h0(x) + f(x)g0(x)h(x) + f 0(x)g(x)h(x).

⌅

wife
A
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I
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c
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4.3 The Chain Rule

Theorem 6 (The Chain Rule).

If y = f(u) is a differentiable function of u,

u = g(x) is a differentiable function of x,

then the composite function y = f(g(x)) is a differentiable function of x, and

dy

dx
=

dy

du

du

dx

or equivalently
dy

dx
= f 0(g(x))g0(x).

How to understand?

Consider the difference quotient,
�y

�x
=

�y

�u
· �u

�x
, take limit as �x ! 0.

Example 4.3.1. Compute:
d

dx
(1 + 2x)5.

Solution. Set y = f(u) = u5 and u = g(x) = 1 + 2x. Then f(g(x)) = (1 + 2x)5.
By chain rule,

f 0(u) =
dy

du
= 5u4 and g0(x) =

du

dx
= 2.

Hence
dy

dx
=

dy

du

du

dx
= (5u4)(2) = 10(1 + 2x)4.

or
dy

dx
= f 0(g(x))g0(x) = 10(1 + 2x)4.

⌅
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Example 4.3.2. Compute:
d

dx

q
1 +

p
x.

Solution. Let y = f(u) =
p
u, u = g(x) = 1 +

p
x. Then f(g(x)) =

p
1 +

p
x.

dy

du
=

1

2
u�1/2 =

1

2
p
u

and
du

dx
=

1

2
p
x
.

Therefore
dy

dx
=

dy

du

du

dx
=

1

2
p
u

1

2
p
x
=

1

4
p
x
p
1 +

p
x
.

⌅

Remark. No need to write the fomulas f(u), g(x) when we are skillful, just remember to
differentiate layer by layer: outer than inner.

For example,

d

dx
(x+ ex)2019 = 2019(

g(x)
z }| {
x+ ex )2018

| {z }
outer

(1 + ex)| {z }
inner

Example 4.3.3. Using (ex)0 = ex and chain rule, we can prove (ax)0 = ax ln a (a > 0).

Proof. Note:
ax = eln ax (Very useful technique!)

Then,

(ax)0 = (eln ax)0

= (ex ln a)0

= ex ln a · ln a
= ax · ln a.

y w
u
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Example 4.3.4. Use product rule and chain rule to prove the quotient rule.

Proof. By product rule, we have
✓
f

g

◆0
=

✓
f · 1

g

◆0
= f 0 · 1

g
+ f ·

✓
1

g

◆0
.

For
✓
1

g

◆0
, let y = 1

u , u = g(x), then by chain rule,

✓
1

g

◆0
=

dy

du
· du
dx

= � 1

g2(x)
g0(x).

Therefore, ✓
f

g

◆0
= f 0 1

g
� f

g0

g2
=

f 0g � fg0

g2
.

Example 4.3.5. Compute
d

dx
e
p
x2+x.

Solution.

dy

dx
= e

p
x2+x · (

p
x2 + x)0 (chain rule, y = eu, u =

p
x2 + x)

= e
p
x2+x · 1

2
(x2 + x)�

1
2 · (2x+ 1) (chain rule again, u =

p
w,w = x2 + x)

⌅

Exercise 4.3.1. Prove

1.
d

dx
(g(x))n = n(g(x))n�1g0(x).

2.
d

dx
e

q
x�1
x+1 = e

q
x�1
x+1 · (x� 1)�

1
2 · (x+ 1)�

3
2 .
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4.3.1 Technique Using Logarithmic Differentiation

Example 4.3.6. Prove
d

dx
ln |x| = 1

x
, x 6= 0.

Proof. Let

y = ln |x| =
(
lnx, if x > 0

ln(�x), if x < 0

For x > 0,
dy

dx
=

1

x
;

For x < 0,
dy

dx
=

1

�x
· (�1) =

1

x
. (by chain rule)

Example 4.3.7. If y =
3

r
(x� 2)(x� 3)2

x� 5
, then find

dy

dx
.

Solution.

y3 =
(x� 2)(x� 3)2

x� 5

ln y3 = ln
(x� 2)(x� 3)2

x� 5

3 ln y = ln(x� 2) + 2 ln(x� 3)� ln(x� 5)

3

y

dy

dx
=

1

x� 2
+

2

x� 3
� 1

x� 5

dy

dx
=

y

3

✓
1

x� 2
+

2

x� 3
� 1

x� 5

◆

dy

dx
=

1

3
3

r
(x� 2)(x� 3)2

x� 5

✓
1

x� 2
+

2

x� 3
� 1

x� 5

◆

⌅
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Example 4.3.8. Compute the derivative of xx, x > 0.

Solution. Write xx = ex lnx. Let y = eu and u = x lnx. Then

d

dx
xx =

dy

du

du

dx

= eu(lnx
dx

dx
+ x

d lnx

dx
)

= eu(lnx+ x
1

x
)

= xx(lnx+ 1).

⌅

Exercise 4.3.2. Let y = f(x)g(x). Prove y0 = f(x)g(x)
✓
g0(x) ln f(x) +

f 0(x)

f(x)
g(x)

◆
.
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Chapter 5: Differentiation II

Learning Objectives:
(1) Use implicit differentiation to find slope.
(2) Discuss inverse function and its derivatives.
(3) Study the higher order derivative.

5.1 Differentiating Implicit Functions and Inverse Functions

5.1.1 Implicit functions

Example 5.1.1. Consider the circle on the x � y plane defined by x2 + y2 = 25. Find the
equation of the tangent line to the circle at (3, 4).

Solution. Method 1. Express y in terms of x explicitly.

x2 + y2 = 25 ) y = ±
p

25� x2,

Restrict to a small neighbourhood of the point (3, 4) on the curve, y > 0 can be uniquely
given by y =

p
25� x2.

5-1
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So,
y0 = � xp

25� x2

when x = 3, y0 = �3
4 . The equation of the tangent line to the curve at (3, 4) is

y � 4 = �3

4
(x� 3),

y = �3

4
x+

25

4
.

Method 2. Implicit differentiation.

Regard y as a function y(x) without explicit formula. Differentiate both sides of x2+y2 =
25 with respect to x, and then solve algebraically for dy

dx .

2x+
d

dx
(y2) = 0

2x+ 2y
dy

dx
= 0 (chain rule)

dy

dx
= �x

y

So,
dy

dx

����
(3,4)

= �3

4
.

Then, find the tangent line in the same way as with Method 1.

⌅

Remark. Method 2 is referred to as implicit differentiation, which is very useful to compute
derivatives of functions not defined by explicit formulae.

Example 5.1.2. Let y = f(x) be a differentiable function of x that satisfies the equation

x2y + y2 = x3. Find the derivative
dy

dx
.

Solution. You are going to differentiate both sides of the given equation with respect to x.
So that you will not forget that y is actually a function of x, temporarily use the alternative
notation f(x) for y, and begin by rewriting the equation as

x2f(x) + (f(x))2 = x3.
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Now differentiate both sides of this equation term by term with respect to x:

d

dx
[x2f(x) + (f(x))2] =

d

dx
[x3]

;


x2

df

dx
+ f(x)

d

dx
(x2)

�
+ 2f(x)

df

dx
= 3x2.

(5.1)

Thus, we have

x2
df

dx
+ f(x)(2x) + 2f(x)

df

dx
= 3x2

; [x2 + 2f(x)]
df

dx
= 3x2 � 2xf(x)

;
dy

dx
=

3x2 � 2xf(x)

x2 + 2f(x)
.

(5.2)

Finally, replace f(x) by y to get
dy

dx
=

3x2 � 2xy

x2 + 2y
.

⌅

Summary: Carrying out Implicit Differentiation

Suppose an equation defines y implicitly as a differentiable function of x. To find
dy

dx
:

1. Differentiate both sides of the equation with respect to x. Remember that y is really a
function of x, and use the chain rule when differentiating terms containing y.

2. Solve the differentiated equation algebraically for
dy

dx
in terms of x and y.

Example 5.1.3. Consider the curve defined by

x3 + y3 = 9xy.

1. Compute
dy

dx
.

2. Find the slope of the tangent line to the curve at (4, 2).

Solution. Starting with
x3 + y3 = 9xy,

we apply the differential operator
d

dx
to both sides of the equation to obtain

d

dx

�
x3 + y3

�
=

d

dx
9xy.

we

Tf
as a functionof both xandT

T
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Figure 5.1: A plot of x3 + y3 = 9xy. While this is not a function of y in terms of x, the
equation still defines a relation between x and y.

Applying the sum rule, we see that

d

dx
x3 +

d

dx
y3 =

d

dx
9xy.

Let’s examine each of the terms above in turn. To begin,

d

dx
x3 = 3x2.

On the other hand,
d

dx
y3 is treated somewhat differently. Here, viewing y = y(x) as an

implicit function of x, we have by the chain rule that

d

dx
y3 =

d

dx
(y(x))3

= 3(y(x))2 · y0(x)

= 3y2
dy

dx
.

Consider the final term
d

dx
(9xy). Regarding y = y(x) again as an implicit function, we have:

d

dx
(9xy) = 9

d

dx

�
x · y(x)

�

= 9
�
x · y0(x) + y(x)

�

= 9x
dy

dx
+ 9y.

Putting all the above together, we get:

3x2 + 3y2
dy

dx
= 9x

dy

dx
+ 9y.

not thegraphof a function
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Now we solve the preceding equation for
dy

dx
. Write

3x2 + 3y2
dy

dx
= 9x

dy

dx
+ 9y

() 3y2
dy

dx
� 9x

dy

dx
= 9y � 3x2

() dy

dx

�
3y2 � 9x

�
= 9y � 3x2

() dy

dx
=

9y � 3x2

3y2 � 9x
=

3y � x2

y2 � 3x
.

For the second part of the problem, we simply plug in x = 4 and y = 2 to the last

formula above to conclude that the slope of the tangent line to the curve at (4, 2) is
5

4
. See

Figure 5.2. ⌅

�6 �4 �2 2 4 6
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4
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y

Figure 5.2: A plot of x3 + y3 = 9xy along with the tangent line at (4, 2).

Example 5.1.4. Let L be the curve in the x� y plane defined by x2 + y2 + exy = 2. Use L
to implicitly define a function y = y(x). Find y0(x) at x = 1 and the tangent line to the curve
L at (1, 0).

Solution. (Note: In this case, there is no good explicit formula for the function y(x).)
Differentiate the equation x2 + y2 + exy = 2 on both sides with respect to x. We get:

2x+ 2yy0 + exy(y + xy0) = 0,

; y0 = �2x+ exyy

2y + exyx
.




